Predicting Flush End‐Plate Connections Response Using Artificial Neural Networks

نویسندگان

چکیده

Abstract Predicting the moment‐rotation response parameters of semi‐rigid steel connections can be challenging given multitude components that contribute to connection's elastic and plastic deformations. This applies popular bolted flush end‐plate beam‐to‐column (FEPCs). The literature has highlighted limitations current analytical, mechanical, empirical models in providing accurate predictions. Considering these limitations, application machine‐learning methods structural engineering, such as artificial neural networks (ANN), have gained wide attention recently addressing problems associated with complex deformation damage phenomena. To end, superior nonlinearity ANNs is employed herein predict characteristics FEPCs. A dataset more than 200 specimens, collected from past experimental programs, utilized train ANN for predicting stiffness, strength, posy‐yield stiffness. paper describes deduction test data using fitting, determination significant geometric material features, architecture algorithms, accuracy metrics new model.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting students' performance using artificial neural networks

Artificial intelligence has enabled the development of more sophisticated and more efficient student models which represent and detect a broader range of student behavior than was previously possible. In this work, we describe the implementation of a user-friendly software tool for predicting the students' performance in the course of “Mathematics” which is based on a neural network classifier....

متن کامل

Artificial neural networks: applications in predicting pancreatitis survival

Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...

متن کامل

Artificial neural networks: applications in predicting pancreatitis survival

Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Optimizing Multiple Response Problem Using Artificial Neural Networks and Genetic Algorithm

  This paper proposes a new intelligent approach for solving multi-response statistical optimization problems. In most real world optimization problems, we are encountered adjusting process variables to achieve optimal levels of output variables (response variables). Usual optimization methods often begin with estimating the relation function between the response variable and the control variab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ce/papers

سال: 2023

ISSN: ['2509-7075']

DOI: https://doi.org/10.1002/cepa.2241